HW IV, Math 530, Fall 2014

Ayman Badawi

- **QUESTION 1.** (i) Let (G, *) be a cyclic group of order 12, say G = (a) for some $a \in G$. Then we know that G has unique subgroups of order 6, 4, 3, and 2. Construct each subgroup in terms of powers of a.
- (ii) Let H be the subgroup of G of order 3 that you constructed in (i). Construct the Caley table for the group G/H.
- (iii) Let (G, *) be an infinite cyclic group, say G = (a) for some $a \in G$. In terms of powers of a, construct all subgroups of G that contain the element a^{-7} . Construct all subgroups of G that contain the element a^{6} .
- (iv) Let D, G be finite groups, and let $M = D \times G$. Let $(a, b) \in M$. Prove that |(a, b)| = Lcm[|a|, |b|] (note that Lcm[|a|, |b|] = |a||b|/gcd(|a|, |b|) is called the least common multiple of |a| and |b|).
- (v) Let $D = (Z_4, +) \times (Z_6, +), G = (Z_9, +), \text{ and } M = D \times G$. Calculate the order of $(1, 2, 3) \in M$.
- (vi) Let D be a finite cyclic group and G be an infinite cyclic group. Is $M = D \times G$ cyclic? if yes, then prove it. If no, then explain "no", i.e., do you mean sometimes yes and sometimes no or "no" means M is never cyclic.
- (vii) Let D, G be infinite cyclic groups. Is $M = D \times G$ cyclic? if yes, then prove it. If no, then explain "no", i.e., do you mean sometimes yes and sometimes no or "no" means M is never cyclic.
- (viii) Let D, G be finite cyclic groups, and $M = D \times G$. Prove that M is cyclic if and only if gcd(|D|, |G|) = 1. Is $(Z_8, +) \times (Z_{14}, +)$ cyclic?

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com