HW IV , Math 530, Fall 2014

Ayman Badawi

QUESTION 1. (i) Let $(G, *)$ be a cyclic group of order 12 , say $G=(a)$ for some $a \in G$. Then we know that G has unique subgroups of order $6,4,3$, and 2 . Construct each subgroup in terms of powers of a.
(ii) Let H be the subgroup of G of order 3 that you constructed in (i). Construct the Caley table for the group G / H.
(iii) Let $(G, *)$ be an infinite cyclic group, say $G=(a)$ for some $a \in G$. In terms of powers of a, construct all subgroups of G that contain the element a^{-7}. Construct all subgroups of G that contain the element a^{6}.
(iv) Let D, G be finite groups, and let $M=D \times G$. Let $(a, b) \in M$. Prove that $|(a, b)|=L c m[|a|,|b|]$ (note that $\operatorname{Lcm}[|a|,|b|]=|a||b| / \operatorname{gcd}(|a|,|b|)$ is called the least common multiple of $|a|$ and $|b|)$.
(v) Let $D=\left(Z_{4},+\right) \times\left(Z_{6},+\right), G=\left(Z_{9},+\right)$, and $M=D \times G$. Calculate the order of $(1,2,3) \in M$.
(vi) Let D be a finite cyclic group and G be an infinite cyclic group. Is $M=D \times G$ cyclic? if yes, then prove it. If no, then explain "no", i.e., do you mean sometimes yes and sometimes no or "no" means M is never cyclic.
(vii) Let D, G be infinite cyclic groups. Is $M=D \times G$ cyclic? if yes, then prove it. If no, then explain "no", i.e., do you mean sometimes yes and sometimes no or "no" means M is never cyclic.
(viii) Let D, G be finite cyclic groups, and $M=D \times G$. Prove that M is cyclic if and only if $\operatorname{gcd}(|D|,|G|)=1$. Is $\left(Z_{8},+\right) \times\left(Z_{14},+\right)$ cyclic?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

